Из каких элементов состоит каркас здания

Железобетонный каркас одноэтажных промышленных зданий. Каркас одноэтажного промышленного здания состоит из колонн, фундаментов под ними, несущих элементов покрытия и связей

Каркас одноэтажного промышленного здания состоит из колонн, фундаментов под ними, несущих элементов покрытия и связей. Кроме того, в состав каркаса входят (при наличии их в здании) — подкрановые, фундаментные и обвязочные балки. В каркасах зданий большой протяженности предусматривают температурные швы, располагаемые не более чем через 60 м. Эти швы конструктивно решаются установкой сдвоенных колонн. Они делят каркас здания.

Все сборные железобетонные элементы каркаса при изготовлении снабжаются стальными закладными деталями для сварки или сбалчивания их при монтаже, а также монтажными петлями (или отверстиями) для строповки при подъеме конструкций кранами.

Во избежание коррозии соединительных деталей в дальнейшем их обетонивают, покрывают антикоррозийными составами или выполняют из нержавеющей стали.

Фундаменты под колонны. Под колонны каркаса устраивают отдельно стоящие железобетонные фундаменты стаканного типа.

Сборные железобетонные фундаменты устраивают, как правило, в виде одного блока, представляющего собой стакан с плитой. Вес таких блоков колеблется от 1,65 до 4,7 т.

При тяжелых нагрузках применение сборных фундаментов, состоящих из одного блока, становится нецелесообразным, ввиду их большого веса. В этих случаях фундаменты делают расчлененными и соединяют между собой при монтаже их отдельные элементы сваркой закладных деталей или замоноличиванием. Подколонники и плиты имеют вертикальные отверстия круглой или овальной формы, вследствие чего при наложении плит друг на друга образуются сквозные колодцы. Для замоноличивания фундамента колодцы его средней зоны заполняют бетоном, с предварительной установкой в них арматурных стержней или каркасов. В отдельных случаях, при соответствующем технико-экономическом обосновании, применяют монолитные ступенчатые, фундаменты стаканного типа, выполняемые на месте.

Блоки сборных фундаментов устанавливают на щебеночную подготовку толщиной 100 мм; при влажных грунтах подготовку делают из бетона марки 50.

Верхнюю плоскость фундамента, как правило, располагают на 150 мм ниже отметки чистого пола, что дает возможность произвести обратную засыпку земли в котлованы до начала монтажа колонн. Если при этом глубина заложения подошвы фундамента в силу грунтовых условий (или по условиям заглубления технологического оборудования) окажется недостаточной, то фундамент устанавливают на бетонную подушку. Высота фундаментов, состоящих из нескольких рядов элементов, может регулироваться введением дополнительных рядов. При необходимости очень глубокого заложения фундаментов применяют иногда колонны увеличенной высоты.

Для передачи нагрузок от наружных и внутренних стен на фундаменты колонн каркаса применяют фундаментные балки.

Сборные железобетонные балки для шага колонн 6 и 12 ж имеют в поперечном сечении форму тавра. Высота их равна 400 или 600 мм, а ширина поверху — 300 или 400 мм. В зависимости от длины балки бывают: основные и укороченные (применяемые при укороченном шаге, например, около температурных швов).

Под наружные стены фундаментные балки укладывают с выносом за грани колонн, а под внутренние их располагают между колоннами по осевым линиям. При укладке верхнюю грань фундаментных балок устанавливают на уровне 30 мм ниже пола помещения, который располагают на 150 мм выше спланированной вокруг здания поверхности земли. Поверх фундаментных балок устраивают гидроизоляцию из двух слоев рулонного материала на мастике.

Балки устанавливают непосредственно на уступы фундаментов колонн или на бетонные столбики, опирающиеся на эти уступы.

Отопление, водоснабжение, канализация

Навигация: Главная → Все категории → Архитектура промышленных зданий

Любое промышленное здание представляет собой обоснованное сочетание технологических, инженерно-строительных, архитектурных, экономических и других решений и в зависимости от назначения включает в себя две основные группы конструкций, получивших название несущих (составляющих несущий остов) и ограждающих элементов, часто именуемых ограждениями. Несущий остов в большинстве случаев может состоять из фундаментов, колонн и стоек (реже стен), несущих конструкций покрытий и перекрытий, подкрановых балок и связей. Ограждающие конструкции включают в себя наружные и внутренние стены, перегородки, заполнения световых и других проемов (дверей, ворот), элементы покрытия и полы.

В промышленных зданиях могут быть приняты различные решения несущего остова, которые характеризуются их конструктивными схемами. Применяют различные конструктивные схемы: каркасные, бескаркасные и с неполным каркасом. К первым относят схемы, в которых все вертикальные несущие элементы представляют собой стойки, колонны или столбы. В случаях когда действующие нагрузки воспринимаются несущими стенами, здания именуют бескаркасными. В зданиях с неполным каркасом наряду с несущими стенами внутри его в качестве промежуточных опор предусматривают колонны, стойки или столбы.

Как уже говорилось, несущие конструкции промышленных зданий образуют несущий остов, предназначенный для восприятия и передачи действующих нагрузок на основание здания. Несущий остов, как правило, принимают по рамной схеме, образуемой вертикальными несущими элементами, на которые опирают ригели рам. Рамы могут иметь либо жесткое, либо шарнирное сопряжение элементов. В одноэтажных промышленных зданиях, как правипо, применяют конструктивную схему с шарнирным сопряжением ригеля рамы с колонной и жесткой заделкой колонн в фундаментах, например двухшарнирную схему. Могут применяться и другие схемы (трехшарнирная, бесшарнирная).

Пространственная жесткость здания в продольном направлении обеспечивается фундаментными балками, а также дисками покрытия и перекрытия и связями.

Как правило, производственные одноэтажные здания строят по каркасной схеме. Каркас применяют чаще всего железобетонный, реже стальной; в отдельных случаях может быть применен неполный каркас с несущими каменными стенами.

Здания одноэтажных цехов с типовыми унифицированными конструкциями из сборного железобетона с укрупненной сеткой колонн могут иметь различные конструктивные схемы Для всех схем зданий необходимо предусматривать меры по обеспечению жесткости и устойчивости конструкции отдельных частей и всего здания. При наличии подвесного транспортного оборудования или подвесных потолков, а также при подвеске различных коммуникаций несущие конструкции покрытий в ряде случаев можно распологать через 6 м и применять подстропильные конструкции при шаге колонн 12 м. Если подвесного транспортного оборудования нет, стропильные балки и фермы располагают через 12 м, применяя плиты пролетом 12 м.

Одноэтажные производственные здания проектируют, как правило, по рамной системе, представляющей собой конструкцию, состоящую из поперечных рам, образуемых колоннами, защемленными в фундаментах и шарнирно (или жестко) связанными с ригелями покрытия (балками или фермами). Типовым решением являются одноэтажные здания с поперечными рамами и с шарнирным соединением ригелей и колонн. При таком соединении возможна независимая типизация ригелей и колонн, так как в этом случае нагрузка, приложенная к одному из элементов, не вызывает изгибающего момента в другом. В этом случае достигается высокая степень универсальности колонн и ригелей покрытия, возможность их использования для различных пролетов здания и типов несущих конструкций покрытия и т. п. Кроме того, шарнирное соединение колонн и ригелей конструктивно значительно проще жесткого, так как облегчается изготовление и монтаж конструкций. Техническими правилами (ТП 101—81) расширена область применения железобетонных конструкций.

элемент, состоять, каркас, здание

В производственных зданиях рекомендованы эффективные железобетонные предварительно напряженные несущие конструкции (из высокопрочных тяжелых и легких бетонов с применением высокопрочной арматурной стали) с малой материалоемкостью и трудоемкостью. Стальные конструкции целесообразно применять при соответствующих климатических условиях (на Крайнем Севере и в некоторых других районах), при отсутствии заводов сборного железобетона, с учетом конкретных условий строительства и его дроков. При стальном каркасе конструктивные схемы в основном аналогичны схемам из железобетона и определяются сочетанием основных элементов здания — балок, ферм, колонн, связанных в единое целое

При выборе конструктивной схемы производственных зданий со стальным каркасом необходимо учитывать разнообразные факторы, наиболее важными из которых являются режим работы кранов, нагрузки от кранов и покрытий, а также основные объемно-планировочные параметры цеха (высота, шаг и пролет). Стальные конструкции применяют в цехах заводов, в которых используют краны весьма тяжелого и непрерывного режима работы, и в других случаях, указанных в ТП 101—81.

Главным направлением развития металлических конструкций для промышленного строительства является применение типовых легких несущих конструкций комплектной поставки для одноэтажных производственных зданий с основными производствами площадью не менее 5000 м2.

При выборе металлических конструкций их экономичность следует рассматривать комплексно, с учетом оптимальных массы, трудоемкости изготовления и монтажа, сроков монтажа и их стоимости. В настоящее время расширяется внедрение эффективных металлических конструкций: легких, неразрезных, обеспечивающих блочный монтаж или конвейерную сборку. Рекомендованы прогрессивные конструкции покрытий: с фермами из широкополочных двутавров и гнутосварных профилей пролетом 24, 30 и 36 м, широкополочных тавров пролетами 18, 24, 30 и 36 м; беспрогонные — с фермами из гнутосварных профилей пролетами 18, 24 и 30 м; беспрогонные — с фермами из одиночных уголков со сварными узлами пролетами 24 и 30 м; структурные — из прокатных профилей пролетами 18 и 24 м.

Наряду с широким использованием железобетонных и выборочным применением стальных конструкций иногда могут быть рекомендованы комбинированные сталежелезобетонные конструкции. В них железобетон используется в сжатых частях, а растянутые элементы делаются металлическими. Эти конструкции, находясь на стыке железобетонных и металлических, выгодно отличаются от первых меньшей массой, а от вторых—меньшим расходом стали.

Для совершенствования условий работы каркасов производственных зданий, оснащенных кранами значительной грузоподъемности, рядом специалистов предложено новое направление в проектировании производственных зданий, одним из принципов которого является раздельное конструктивное решение и независимая работа конструкций строительной и технологической частей здания. Предлагается элементы несущего каркаса зданий освободить от технологических и крановых нагрузок, благодаря чему существенно снизятся удельные показатели материалоемкости и трудоемкости конструкций. Такой метод получил название автономного конструирования технологических и строительных частей зданий. Оборудование в таких зданиях устанавливают на собственные фундаменты или на сборно-разборные встроенные этажерки, конструкции которых не связаны с конструкциями каркаса здания. Реализация автономного метода может достигаться в зависимости от условий: заменой мостовых кранов напольными местными или мобильными грузоподъемно-транспортными средствами, манипуляторами и размещением мостовых кранов на самостоятельных эстакадах со строго ограниченными параметрами (пролет и грузоподъемность крана, длина эстакады).

READ  Обшить каркас лестницы деревом своими руками

Железобетонный каркас. Рамные железобетонные каркасы являются основной несущей конструкцией одноэтажных производственных зданий и состоят из фундаментов, колонн, несущих конструкций покрытия (балок, ферм) и связей. Железобетонный каркас может быть монолитным и сборным. Преимущественное распространение имеет сборный железобетонный каркас из унифицированных элементов заводского изготовления. Он наиболее полно удовлетворяет требованиям индустриализации.

Для создания пространственной жесткости плоские поперечные рамы каркаса в продольном направлении связывают фундаментными, обвязочными и подкрановыми балками с панелями покрытия. В плоскостях стен каркасы можно усилить стойками фахверка, иногда называемого стеновым каркасом.

Фундаменты железобетонных колонн. Выбор рационального типа, формы и надлежащих размеров фундаментов существенно влияет на стоимость здания в целом.

В соответствии с указаниями технических правил (ТП 101—81) бетонные и железобетонные отдельно стоящие фундаменты производственных зданий на естественном основании следует выполнять монолитными и сборно-монолитными.

Основные размеры фундаментов назначают по расчету в зависимости от нагрузок и грунтовых условий. Возможны несколько вариантов конструктивных решений фундаментов и опирающихся на них колонн: 1) фундаменты назначают разной высоты с учетом отметок их заложения, а колонны — одной высоты; 2) фундаменты принимают одной высоты, а колонны — разной в зависимости от изменения отметок заложения фундаментов; 3) фундаменты в местах перепадов отметок их заложения возводят с применением специальных вставок и подколенников, колонны же устраивают равной высоты, назначаемой по наименьшей отметке заложения фундаментов.

В фундаментах предусматривают уширенные отверстия — стаканы, имеющие форму усеченной пирамиды, для установки в них колонн. Дно стакана фундамента располагают на 50 мм ниже проектной отметки низа колонн, с тем чтобы подливкой раствора под колонну компенсировать возможные неточности размеров высоты колонн, допускаемые при их изготовлении, и выровнять верх всех колонн.

Рациональным решением конструкции фундаментов ступенчатой формы «стаканного» типа является такое, при котором независимо от глубины их заложения отметка верха подколонника остается постоянной. Это легко достигается некоторым увеличением высоты подколонника, при малом заглублении фундаментов колонн фундамент должен иметь отметку верхней плоскости 0,15 м или быть ниже уровня пола на 150 мм, т. е. на толщину его бетонной подготовки. В случае необходимости большего заглубления фундамента его конструкция усложняется, так как возникает потребность в дополнительном сборном элементе — вставке (банкете), на который устанавливают колонну.

Фундаменты производственных зданий при соответствующем технико-экономическом обосновании устраивают свайными. Рекомендуется для производственных зданий применять прогрессивные виды свай: забивные (без поперечного армирования, составные, пирамидальные, ромбовидные, булавовидные, сваи-колонны), буронабив-ные и др. Такое решение конструкций фундаментов под колонны не зависит от заложения смежных фундаментов под оборудование; малый объем земляных работ дает возможность вести строительство без отрывки котлованов, что сокращает сроки строительства, исключает осадку грунта и пола здания, обеспечивает возможность монтажа оборудования сразу же после окончания устройства фундамента и пр.

На рис. 4, а, б показана конструкция свайного фундамента с монолитным и сборным ростверком.

Фундаментные балки предназначены для опирания наружных и внутренних стеновых конструкций на отдельно стоящие фундаменты каркаса. Для опирания фундаментных балок применяют бетонные столбики, устанавливаемые на цементном растворе на горизонтальные уступы башмаков или на фундаментные плиты. Установка стен на фундаментные балки кроме экономических создает также и эксплуатационные преимущества — упрощается устройство под ними всевозможных подземных коммуникаций (каналов, туннелей и т. п.). Для защиты фундаментных балок от деформаций, вызванных увеличением объема при замерзании пучинистых грунтов, и исключения возможности промерзания пола вдоль стен их засыпают с боков и снизу шлаком. Между фундаментной балкой и стеной по поверхности балки укладывают гидроизоляцию, состоящую из двух слоев рулонного материала на мастике. Вдоль фундаментных балок на поверхности грунта устраивают тротуар или отмостку. Для стока воды тротуарам или отмосткам придают уклон 0,03…0,05 от стены здания.

Колонны. В одноэтажных промышленных зданиях применяют обычно унифицированные сплошные железобетонные од-новетвевые колонны прямоугольного сечения (рис. 5, а) и сквозные двухветвевые (рис. 5, б). Прямоугольные унифицированные колонны могут иметь размеры сечения: 400 х 400, 400 х 600, 400 х 800, 500 х 500, 500 х 1 х 800 мм; двухветвевые — 500 х 1000, 500 х ‘ х 1400, 600×1900 мм и др.

Железобетонные колонны одноэтажных зданий могутбытьбесконсольные, применяемые в помещениях без мостовых кранов, и с консолями — для опирания подкрановых балок. Чтобы придать зданию большую жесткость, вместо прямоугольных одновет-вевых колонн применяют двухветвевые.

В бескранозых зданиях (и при наличии подвесного транспорта) высотой 3,6…7,2 м шаг крайних и средних колонн 6 м; при высоте 4,8…9,6 м — шаг средних колонн 12 м. При наличии мостовых кранов колонны прямоугольного сечения приняты для зданий высотой 8,4; 9,6 и 10,8 м; средние колонны могут иметь шаг 6 или 12 м. В зданиях высотой 10,8; 12,6 и 14,4 м, оборудованных мостовыми кранами грузоподъемностью до 30 т, и в зданиях высотой 16,2 и 18,0 м при кранах грузоподъемностью до 50 т применяют двухветвевые колонны. Высоту колонн подбирают в зависимости от высоты помещения Н и глубины их заделки а в стакан фундамента. Заделка колонн ниже нулевой отметки в зданиях без мостовых кранов равна 0,9 м; в зданиях с мостовыми кранами: 1,0 м — для одноветвевых колонн прямоугольного сечения, 1,05 и 1,35 м — для двухветвевых колонн. Для производственных зданий с ручными мостовыми кранами, необходимыми для монтажа и демонтажа технологического оборудования, применяют колонны меньшей высоты: при грузоподъемности крана 8 т — 7; 7,6; 8,2; 8,8 и 9,4 м; при грузоподъемности 12,5…20 т — 8,2; 8,8;” 9,4; 10 и 10,6 м.

В настоящее время построено значительное количество одноэтажных производственных зданий с центрифугированными колоннами. По сравнению с прямоугольными железобетонные центрифугированные кольцевого сечения колонны при равной жесткости обычно имеют в два раза меньшую площадь поперечного сечения. Их применение в два раза снизило расход бетона, на 20… …30% — стали, на 30% — стоимость изделий и трудозатраты на изготовление.

Как уже говорилось, для усиления основного каркаса в торцах здания применяют колонны вспомогательного каркаса, так называемого фахверка. Этот каркас предназначен для восприятия значительных ветровых нагрузок и веса стенового заполнения при значительной его высоте и протяженности. В соответствии с унифицированными габаритными схемами – зданий были разработаны типовые фахверковые колонны для использования их в унифицированных типовых секциях. Для зданий высотой 10,8 и 12,6 м фахверковые колонны приняты из железобетона прямоугольного сечения 400 х х 600 мм, выше 12,6 м — из жепезобетона с металлическим оголовком; высота колонны переменная и зависит от места установки. Схема фахверковых колонн стен и детали показаны на рис. 6.

Для укладки подкрановых балок на колоннах устраивают подкрановые консопи. Верхнюю надкрановую часть колонны, поддерживающую несущие элементы покрытия (балки или фермы), называют надколенником. Для крепления несущих элементов покрытия к колонне в верхнем торце ее анкерным болтом закрепляют стальной закладной лист. В местах крепления к колонне подкрановых балок и стеновых панелей располагают стальные закладные детали,

Колонны с элементами каркаса сопрягают сваркой стальных закладных деталей с последующим их обетонированием, причем в копоннах, расположенных по наружным продольным рядам, закладывают также стальные детали для крепления к ним крупноразмерных элементов наружных стен.

Связи между колоннами. Вертикальные связи, расположенные по косильной лески колонн здания, создают жесткость и геометрическую неизменяемость колонн каркаса в продольном направлении Их устраивают для каждого температурного блока. Температурным блоком называют участок по длине здания между температурными швами или между температурным швом и ближайшей к нему наружной стеной здания.

В зданиях малой высоты (при высоте колонн до 7…8 м) связи между колоннами можно не устраивать. В зданиях большей высоты предусматривают крестовые или портальные связи. Крестовые связи (рис. 7.8, е) применяют при шаге 6 м, портальные (рис. 8, е) — при 12 м, их выполняют из прокатных уголков и соединяют с колоннами путем сварки косынок крестов с закладными деталями (рис. 8, г).

В цехах значительной высоты и особенно с тяжелым режимом работы кранов повышаются требования, предъявляемые к жесткости и надежности вертикальных связей между колоннами.

Конструкции зданий

Подкрановые балки. Предназначены для опирания крановых рельсов, по которым перемещаются электрические мостовые краны. Эти балки являются также продольными элементами каркаса здания

Применяют предварительно напряженные железобетонные подкрановые балки пролетом 6 и 12 м высотой 800…1000 мм при шаге колонн 6 м и 1400… 2000 мм — при шаге 12 м. Применяют также и стальные подкрановые балки.

Обвязочные балки. В ряде случаев возникает необходимость применения обвязочных балок, например в каменных стенах в местах перепадов высот здания. Балки разработаны шириной 200 мм — для кирпичных стен толщиной 250 мм и стен из легкобетонных камней толщиной 190 мм; шириной 380 мм —для кирпичных стен тола — крестовых.

Плоскостные несущие конструкции покрытий. Плоскостные несущие конструкции включают в себя следующие элементы: балки, фермы, арки и подстропильные конструкции.

Несущие конструкции покрытия изготовляют из сборного железобетона, стали, дерева. Тип покрытия назначают в зависимости от конкретных условий — размера перекрываемых пролетов, действующих нагрузок, вида производства, наличия строительной базы и др.

Рис 8. Расположение вертикальных продольных связей между колоннами:

Железобетонные балки покрытий. В качестве несущих конструкций используют железобетонные предварительно напряженные балки чаще всего пролетом 12 м для односкатных и плоских покрытий, двускатные решетчатые пролетом 12, 18 и 24 м (рис. 10, а—-в)—при наличии подвесных монорельсов и кран-балок. Односкатные балки предназначены для зданий с наружным водоотводом; двускатные можно применять в зданиях как с наружным, так и внутренним водоотводом. Уширенную опорную часть балки (рис. 10, г) прикрепляют к колонне шарнирно посредством анкерных болтов, выпущенных из колонн и проходящих через опорный лист, приваренный к балке.

READ  Варианты отделки мансардного этажа в частном доме

Железобетонные фермы и арки покрытий. Очертание ферм покрытия зависит от вида кровли, расположения и формы фонаря и общей компоновки покрытия. Для зданий пролетом 18 м и более применяют железобетонные предварительно напряженные фермы из бетона М400, 500 и 600. Фермы предпочтительнее балок при наличии различных санитарно-техни-ческих и технологических сетей, удобно располагаемых в межферменном пространстве, и при значительных нагрузках от подвесного транспорта и покрытия.

В зависимости от очертания верхнего пояса различают фермы сегментные, арочные, с параллельными поясами и треугольные.

Для покрытий зданий пролетом 18 и 24 м часто применяют типовые безраскосные фермы для зданий со скатной и малоуклонной кровлей. Эти фермы обладают определенными преимуществами (удобный пропуск коммуникаций, особенности технологии изготовления). Для пролетов 18 и 24 м применяют также экономичные раскосные фермы сегментного очертания. Фермы с параллельными поясами применены на многих действующих предприятиях при пролетах зданий 18 и 24 м и шаге 6 и 12 м.

В некоторых случаях для покрытия большепролетных производственных зданий применяют сборные железобетонные арочные конструкции. По конструктивной схеме арки разделяют на двухшарнирные (с шарнирными опорами), трехшарнирные (имеющие шарниры в ключе и на опорах) и бесшарнирные.

Подстропильные конструкции предназначены для опирания стропильных балок или ферм, когда шаг колонн превышает шаг основных несущих конструкций покрытия. Подстропильные балки и фермы применяют пролетом 12 м. В связи с потребностью применения укрупненного шага колонн возможно использование подстропильных конструкций с большим пролетом. Для опирания стропильных балок в середине пролета на нижней полке подстропильной фермы имеются банкетки. Подстропильные конструкции крепят к колоннам каркаса аналогично основным конструкциям.

Связи покрытий. Для восприня-тия ветровой нагрузки, действующей на торец здания, в покрытии по нижнему поясу ригелей устраивают горизонтальные связи в виде горизонтальной связевой фермы. Такие связи рациональны в цехах значительной высоты и с большими пролетами. Их выполняют в виде блока-решетки из стальных уголков между двумя крайними ригелями покрытия (рис. 13, а). Кроме того, горизонтальные связи устраивают по верхнему поясу ригелей в виде горизонтальной фермы, образованной крестообразными связями и поясами двух крайних ригелей, а также в виде распорок (из металлических уголков, тяжей или железобетонных элементов), устанавливаемых посередине пролета между всеми остальными ригелями. Такие связи делают только при наличии фонарей. При отсутствии их устойчивость сжатого пояса поперечных рам обеспечивается крупнопанельными плитами покрытия, приваренными к ригелям.

BC: Стальной каркас. введение, типы рам, связи

При покрытиях по прогонам с мелкоразмерными плитами с целью повышения жесткости покрытия необходимо устраивать под прогонами горизонтальные связи крестовой системы. В фонарях устраивают систему связей из вертикальных и горизонтальных стальных уголков. Вертикальные связи между несущими конструкциями покрытия устраивают в крайних пролетах температурного отсека, ограниченного температурными швами или торцом здания. Эти связи предназначены для воспринятия тормозных усилий кранов, а также ветровых воздействий на торец здания. Если ригель рамы представляет собой сквозную полигональную ферму, то вертикальные связи выполняют в виде крестовой решетки из стальных уголков (рис. 13, б).

Стальной каркас. Стальные каркасы применяют при строительстве предприятий металлургии, машиностроения и других в цехах при крупных пролетах и значительных крановых нагрузках. В большинстве других производственных зданий по указанию ТП 101—81 применяют сборный железобетонный каркас. Согласно требованиям ТП 101—81 колонны, балки, стропильные, подстропильные и другие конструкции надлежит выполнять с применением широкополочных двутавров и тавров.

За последние годы проведены большие работы по созданию типовых стальных конструкций, имеющих малую материалоемкость и трудоемкость, усовершенствованы конструкции для покрытий зданий, разработаны типовые конструкции зданий с использованием стального профилированного настила и эффективных утеплителей, а также типовые узлы стальных конструкций покрытий.

По своей конструктивной схеме стальной каркас в целом подобен железобетонному и представляет собой основную несущую конструкцию промышленного здания, поддерживающую покрытие, стены и подкрановые балки, а в некоторых случаях — технологическое оборудование и рабочие площадки. Основными элементами несущего стального каркаса, воспринимающими почти все действующие на здание нагрузки, являются плоские поперечные рамы, образованные колоннами и стропильными фермами. На поперечные рамы, расставленные согласно принятому шагу колонн, опирают продольные элементы каркаса — подкрановые балки, ригели стенового каркаса (фахверка), прогоны покрытия и в некоторых случаях фонари. Пространственная жесткость каркаса достигается устройством связей в продольном и поперечном направлениях, а также (при необходимости) жестким закреплением ригеля рамы в колоннах. В многопролетных зданиях при потребности расположения средних колонн через 12 м промежуточные стропильные фермы опирают на подстропильные фермы.

Фундаменты и базы стальных колонн. Под стальные колонны устраивают отдельно стоящие ступенчатые железобетонные фундаменты, которые заглубляют в грунт. Отметку верха фундамента в зависимости от типа колонн принимают 0,70 или 1,0. Надежное закрепление анкерных болтов в фундаменте достигается посредством сцепления их с бетоном при заделке на определенную глубину или же с помощью опорных шайб, воспринимающих давление бетона по площади шайбы. По аналогии с железобетонным каркасом для воспринятия нагрузки от наружных стен между отдельными фундаментами укладывают сборные железобетонные фундаментные балки. Для предохранения от коррозии нижней опорной части стальных колонн поверхности их, соприкасающиеся с грунтом, необходимо тщательно обетони-ровать. Нижняя часть колонны имеет башмак (базу). Он служит для передачи и распределения давления от стержня стальной колонны на площадь фундамента, а также обеспечивает закрепление нижнего конца колонны в фундаменте. Применяют два основных типа баз — шарнирные и жесткие. Шарнирные базы используют для центрально сжатых, значительно нагруженных колонн с передачей усилий на толстую опорную плиту. На опорную плиту через траверсу нагрузка передается более равномерно. Жесткие базы, как правило, устраивают во внецентренно сжстых колоннах, и размеры траверс приходится увеличивать в направлении действия изгибающего момента. Траверсы выполняют из листов толщиной 10… 12 мм или швеллеров.

Колонны. Стальная колонна состоит из следующих элементов: а) стержня, являющегося основной несущей частью колонны; б) оголовка, выполняющего функцию опоры для расположенных выше конструкций и предназначенного для распределения нагрузки по сечению стержня; в) базы (башмака), посредством которой стержень колонны надежно присоединяется к фундаменту, и сосредоточенная нагрузка от нее распределяется по поверхности фундамента.

По характеру передачи нагрузки различают центрально и внецентренно сжатые колонны. В каркасах промышленных зданий широко применяют внецентренно сжатые колонны, входящие в систему поперечных рам. В поперечных конструкциях цеха можно применять следующие колонны с различной конструктивной системой стержня: 1) постоянного сечения с консолью — для цехов с мостовыми кранами, как правило, малой грузоподъемности переменного сечения (ступенчатые) сплошные и решетчатые, которые наиболее широко применяют, в том числе и для самых тяжелых крановых нагрузок. В стержнях пристенных колонн этого типа различают внутреннюю подкрановую ветвь, воспринимающую давление от крана, и наружную шатровую ветвь; 3) колонны раздельного типа, применяемые в цехах с тяжелой нагрузкой, высотой до 18,0 м. С помощью горизонтальных планок крановую стойку соединяют с шатровой колонной.

Подкрановые балки. Для кранов малой грузоподъемности изготовляют сплошные балки, обычно из прокатного двутавра с усиленным верхним поясом для воспринятия горизонтальных усилий торможения крана; применяют также балки составного сечения на сварке для кранов большой грузоподъемности. При длине 18 м и более рациональны решетчатые подкрановые балки в виде ферм.

Для крановых путей применяют железнодорожные рельсы специального профиля. Выбор типа кранового рельса и его крепления к подкрановой балке зависит от грузоподъемности, режима работ и типа ходовых колес крана. Крепление рельсов к подкрановым балкам, как правило, выполняют подвижным, т. е. допускающим выправление пути (рихтовку). Крановые рельсы профиля КР крепят с помощью специальных лапок.

При узком поясе стальной балки железнодорожные рельсы крепят через каждые 500.700 мм специальными крюками.

Стальные балки и фермы покрытий. Простейшим видом стальных несущих конструкций покрытия являются двутавровые прокатные или составные балки пролетом 12 и 18 м. При больших пролетах рационально применять типовые стальные фермы. Стальные фермы различают по характеру очертания поясов: полигональные, с параллельными поясами, а также треугольные.

В промышленных зданиях с рулонной кровлей используют фермы трапецеидального очертания. Для малоуклонных покрытий применяют фермы с параллельными поясами. При необходимости создать крутые уклоны (более 20%) применяют треугольные фермы. Наиболее часто применяют унифицированные пролеты стальных ферм покрытия зданий, равные 18, 24, 30, 36 м. Для упрощения изготовления проведена унификация геометрических схем и размеров (пролет и высота) ферм.

В условиях широкого внедрения в строительство конвейерной сборки и крупноблочного монтажа покрытий особо важную роль получает компоновка несущих конструкций в блоках (настил, прогоны, подстропильные и стропильные фермы. Элементы фермы соединяют в узлах, как правило, на сварке с помощью фасонок (косынок) из листовой стали, располагаемых между парными уголками. Фермы к стальным колоннам крепят сбоку. Применяют также металлические трубчатые фермы с узловыми соединениями без использования фасонок.

Как уже говорилось, для придания цеху пространственной жесткости, а также для устойчивости элементов рам между ними устраивают связи, а в ряде случаев создают жесткое крепление ригелей на колоннах. В плоскости верхних и нижних поясов ферм размещают горизонтальные связи. Кроме того, как между фермами, так и между колоннами предусматривают вертикальные связи.

Деревянные конструкции покрытий. В некоторых случаях технико-экономический анализ подтверждает высокую эффективность применения деревянных конструкций. В ряде производств с агрессивными средами, в покрытиях складов, гаражей, мастерских и других применение клееных деревянных и клеефанерных конструкций, защищенных современными средствами от гниения и возгорания, позволяет снизить стоимость строительства и обеспечить высокую долговечность здания. Разработаны несущие и ограждающие конструкции из клееной древесины для покрытий производственных зданий (клееные дощатые и клеефанерные балки, клееные сегментные металлодеревянные фермы, трехшарнирные арки, панели покрытий, а также оболочки и складки).

READ  Заплатка на натяжной потолок своими руками

Зарубежный опыт также подтверждает высокую эффективность применения для многих зданий и сооружений несущих клееных конструкций — балок различного сечения, ферм полигональных, трапецеидальных, сегментных и с параллельными поясами, а также арок и рам пролетом до 100 м.

На рис. 22, а, в показаны дощатая клееная балка, арка и фермы. В нашей практике клееные конструкции находят применение в первую очередь в теплых и холодных однопролетных бесчердачных помещениях с наружным отводом воды, без фонарей, в зданиях с нормальным температурно-влажностным режимом, в которых опасность загнивания древесины является минимальной. В современном промышленном строительстве для покрытий применяют также металлодеревянные фермы, в которых элементы, работающие на сжатие, делают деревянными, а на растяжение — металлическими.

На рис. 23, а, б приведен пример конструкции в виде гнутой деревянной рамы покрытия производственного здания и покрытия в виде структуры.

Пространственные несущие конструкции покрытий. При возведении большепролетных производственных зданий в их покрытиях целесообразно применять пространственные конструкции, так как плоскостные конструкции получаются очень громоздкими, с большой собственной массой.

Пространственные конструкции покрытия могут быть выполнены из различных материалов: железобетона (сборного, монолитного и сборно-монолитного), металла (стали, алюминия) и дерева. Применение тонкостенных пространственных конструкций в промышленном строительстве позволяет значительно снизить материалоемкость и массу конструкций, особенно при больших размерах сетки колонн.

В СССР для перекрытия значительных пролетов промышленных зданий находят применение длинные и короткие цилиндрические оболочки; складки; пространственные своды; купола; пологие оболочку (положительной гауссовой кривизны); коноидальные оболочки, гиперболические параболоиды и др. (рис. 24, I, а—н); перекрестно-ребристые и перекрестно-сетчатые конструкции, а также висячие. В ряде случаев целесообразно применять пневматические.

При выборе типа покрытия руководствуются технической и экономической целесообразностью. С технологической точки зрения желательно иметь крупную сетку колонн, однако ее укрупнение увеличивает расход материалов на покрытие, подкрановые балки, утяжеляет мостовые краны, увеличивает массу и стоимость здания в целом. Следовательно, должно быть найдено оптимальное сочетание технических (технологических) и экономических показателей.

3 КУРС(2020-2021у.г.) доц.Егоров В.О. Несущие конструкции одноэтажных промышленных зданий.

Пространственно работающие конструкции покрытий могут быть в виде тонкостенных железобетонных цилиндрических оболочек и призматических складок.

Цилиндрические оболочки и складки. По отношению пролета оболочки к длине ее волны цилиндрические оболочки условно подразделяют на длинные (при отношении пролета — расстояния между опорами к длине волны больше единицы — /,:/21) и короткие (при этом отношении меньше единицы — /,:/2

Металлический каркас здания: устройство, материалы и технология монтажа

Возведение домов с металлическим каркасом в основе является сравнительно новым веянием на отечественном рынке строительных услуг. Несмотря на это, данная технология приобрела большую популярность и широко используется при строительстве жилых зданий, промышленных и торговых объектов. Она позволяет значительно удешевить и ускорить строительство. При этом конечный результат ничуть не уступает по своим техническим параметрам и экономическим показателям традиционным сооружениям.

Особенности сборки каркасной конструкции

Монтаж металлического каркаса можно осуществлять лишь после обустройства фундамента. Для постройки таких домов применяются легковесные материалы, поэтому допускается некапитальный фундамент. Его при необходимости можно разобрать, перевезти на новое мест и заново собрать.

Сборка каркаса заводского изготовления сравнительно проста. Ведь все элементы имеют отверстия для болтов. Необходимо в строгом соответствии с инструкцией от производителя собрать этот конструктор. Кстати, при возведении каркаса использование разборных соединений предпочтительней неразборных видов (в частности, сварки). Такая конструкция будет значительно лучше поглощать колебания и не разрушится. Сварное же соединение может просто лопнуть при значительном порыве ветра или небольшом землетрясении.

Сборка нетипового дома доставит гораздо больше хлопот. Без сварочного аппарата в таком деле трудно обойтись. Как известно, свариваемость сильно ухудшается при повышении процентной доли углерода в составе стали. По этой причине для таких целей нужно по возможности использовать прокат из малоуглеродистых марок сталей.

Почему следует отдать предпочтение именно каркасной основе?

Каркасное строительство имеет множество преимуществ по сравнению с другими методами возведения строений:

  • сравнительно небольшие затраты на строительные материалы;
  • скорость возведения (построить полноценный хороший дом можно в кратчайшие сроки – всего лишь за месяц);
  • возможность вести строительство непрерывно, без учета погодного фактора, даже если идет снег с дождем;
  • такие постройки имеют небольшой вес, поэтому отсутствуют усадочные процессы, приводящие к растрескиванию стен и перегородок металлического каркаса;
  • возможность построить дом самостоятельно, для чего понадобится лишь краткосрочная помощь нескольких человек (возможно, членов семьи).

Область применения

На протяжении длительного периода времени такие дома строились для нужд сельского хозяйства (теплицы, хлева, бараки), малой промышленности (цеха, мастерские) и складского хозяйства (терминалы, склады). Параллельно усовершенствованию технологии металлический каркас все более часто использовался в строительстве элитных строений по дорогим и эксклюзивным архитектурным проектам. Сегодня в Японии, а также в странах Западной Европы и США большинство зданий возводятся по этой технологии.

Здания с металлическим каркасом: область применения

Каркасные дома начали возводить довольно-таки давно. Изначально несущая конструкция выполнялась, как правило, из дерева. Но сегодня потребители отдают предпочтение металлическому профилю. В принципе, материалы сопоставимы по стоимости, но в то же время стальные опоры более надежны, имеют гораздо больший запас прочности, не подвержены гниению. Да, возможно, они окисляются и ржавеют. Но современные технологии позволяют создавать на поверхности надежное антикоррозионное покрытие (как диффузионного типа, так и гальваническое напыление). Таким образом, устройство металлического каркаса вполне оправдано.

Составные элементы каркаса одноэтажных промышленных зданий

Как пример однопролетное здание, оборудованное мостовым краном (рис.1).

В состав каркаса входят следующие основные элементы:

    Колонны, расположенные с шагом Ш вдоль здания; основное назначение колонн поддерживать подкрановые балки и покрытие.

Несущие конструкции покрытия (стропильные балки или фермы), которые опираются непосредственно на колонны (если их шаг совпадает с шагом колонн) и образуют вместе с ними поперечные рамы каркаса.

Если шаг несущих конструкций покрытия не совпадает с шагом колонн (например, 6 и 12 м), в состав каркаса вводят расположенные в продольных плоскостях подстропильные конструкции (также в виде балок или ферм), поддерживающие промежуточные несущие конструкции покрытия, расположенные между колоннами ( рис.1,б).

В некоторых (редких) случаях в состав каркаса вводятся прогоны, опирающиеся на несущие конструкции покрытия и располагаемые на расстояниях 1,5 или 3 м.

Подкрановые балки, опирающиеся на колонны и несущие пути мостовых кранов. В зданиях с подвесными или напольными кранами подкрановые балки не нужны.

Фундаментные балки, опирающиеся на фундаменты колонн и поддерживающие наружные стены здания.

Обвязочные балки, опирающиеся на колонны и поддерживающие отдельные ярусы наружной стены (если она не по всей своей высоте опирается на фундаментные балки).

  • При расстоянии между основными колоннами каркаса, в плоскостях наружных стен 12 м и более, а также в торцах здания устанавливают вспомогательные колонны (фахверк), облегчающие конструкцию стен.
  • а — при одинаковом шаге колонн и несущих конструкций покрытия; б — при неодинаковом шаге колонн и несущих конструкций покрытия; 1 — колонны; 2 — несущие конструкции покрытия; 3 — подстропильные конструкции; 4 —- прогоны; 5 — подкрановые балки; 6 — фундаментные балки; 7 — обвязочные балки; в — продольные связи колонн; 9 — продольные вертикальные связи покрытия; 10 — поперечные горизонтальные связи покрытия; 11 — продольные горизонтальные связи покрытия.

    В стальных каркасах обвязочные балки также относят к фахверку (рис. 2, а). Каркас в целом должен надежно и устойчиво работать под действием крановых, ветровых и других нагрузок.

    а. фахверк продольной стены, б. торцовой фахверк, 1. основные колонны, 2. колонны фахверка, 3. ригель фахверка, 4. ферма покрытия

    Вертикальные нагрузки Р от мостового крана (рис.3), передаваемые через подкрановые балки на колонны с большим эксцентриситетом, вызывают внецентренное сжатие тех колонн, против которых расположен в данный момент мост крана.

    габарит крана, 2. тележка, 3. мост крана, 4. крюк, 5. колесо крана; 6. крановый рельс; 7. подкрановая балка; 8. колонна

    Торможение тележки мостового крана при ее движении вдоль кранового моста (поперек пролета) создает горизонтальные поперечные тормозные силы Т1 действующие на те же колонны.

    Торможение мостового крана в целом при его движении вдоль пролета создает продольные тормозные силы Т2, действующие вдоль рядов колонн. При грузоподъемности мостовых кранов, достигающей 650 т и выше, передаваемые ими на каркас нагрузки бывают очень велики. Подвесные краны движутся по путям, подвешенным к несущим конструкциям покрытия, и через них передают свои нагрузки на колонны.

    Ветровые нагрузки при различных направлениях ветра могут действовать на каркас как в поперечном, так и в продольном направлениях.

    Для обеспечения устойчивости отдельных элементов каркаса в процессе его монтажа и совместной пространственной их работы при воздействии на каркас различных нагрузок в состав каркаса вводят связи.

    Ремонт в регионах

    Основные элементы каркаса. рамы. Они состоят из колонн и несущих конструкций покрытий. балок или ферм, длинномерных настилов и пр. Эти элементы соединяют в узлах шарнирно с помощью металлических закладных деталей, анкерных болтов и сварки. Рамы собирают из типовых элементов заводского изготовления. Другие элементы каркаса. фундаментные, обвязочные и подкрановые балки и подстропильные конструкции. Они обеспечивают устойчивость рам и воспринимают нагрузки от ветра, действующего на стены здания и фонари, а также нагрузки от кранов.